МЦНМО ИНТЕРНЕТ БИБЛИОТЕКА Физматлит

Каталог библиотеки

Джордж Пойа.
George Polya

Математика и правдоподобные рассуждения.

под редакцией С.А.Яновской.

Пер. с английского И.А.Вайнштейна.

М., Наука, 1975 — 464 с.
100 000 экз.


Данная книга обращена прежде всего к тем, кто изучает математику, — начиная от учащихся старших классов и студентов и кончая специалистами в различных областях, которым приходится встречаться с применением математических методов исследования. Читатель узнает, какими путями добываются новые факты в математике, с какой степенью доверия следует относиться к той или иной математической гипотезе — одним словом, перед ним раскрывается подлинный процесс математического творчества. (Автор особенно подчеркивает общность путей открытия истин для всех естественных наук.) Благодаря этому книга является также незаменимым пособием для преподавателей математики всех ступеней. Увлекательность изложения, обилие исторических иллюстраций, а также предпринятая автором попытка построения теории правдоподобных (индуктивных) умозаключений делают книгу интересной и для профессионала-математика.


СОДЕРЖАНИЕ

Предисловие редактора перевода.
Предисловие.
Советы читателю.

Том I.
ИНДУКЦИЯ И АНАЛОГИЯ В МАТЕМАТИКЕ.

Глава I. Индукция.
1. Опыт и представление.
2. Наводящие контакты.
3. Подкрепляющие контакты.
4. Индуктивный подход.
Примеры и примечания к главе I.
      [12. Да и нет. 13. Опыт и поведение. 14. Логик, математик, физик и инженер.]

Глава II. Обобщение, специализация, аналогия.
1. Обобщение, специализация, аналогия и индукция.
2. Обобщение.
3. Специализация.
4. Аналогия.
5. Обобщение, специализация и аналогия.
6. Открытие по аналогии.
7. Аналогия и'индукция.
Примеры и примечания к главе II.
Первая часть.
      [1. Правильное обобщение. 5. Крайний частный случай. 7. Ведущий частный случай. 10. Частный случай-представитель. 11. Аналогичный случай. I8. Великие аналогии. 19 Выясненные аналогии. 20. Цитаты.]
Вторая часть.
      [21. Предположение Э. 44. Возражение и первый шаг к доказательству. 45. Второй шаг к доказательству. 46. Опасности аналогии.]

Глава III. Индукция в пространственной геометрии.
1. Многогранники.
2. Первые подкрепляющие контакты.
3. Еще подкрепляющие контакты.
4. Суровое испытание.
5. Подтверждения и подтверждения.
6. Совсем не похожий случай.
7. Аналогия.
6. Разбиение пространства.
9. Видоизменение задачи.
10. Обобщение, специализация, аналогия.
11. Одна аналогичная задача.
12. Серия аналогичных задач.
13. Много задач иногда легче решить, чем только одну.
14. Предположение.
15. Предсказание и подтверждение.
16. Снова и лучше.
17. Индукция подсказывает дедукцию; частный случай подсказывает общее доказательство.
18. Еще предположения.
Примеры и примечания к главе III.
      [21. Индукция: приспособление ума, приспособление языка. 31. Работа Декарта о многогранниках. 36. Дополнительные телесные углы, дополнительные сферические многоугольники.]

Глава IV. Индукция в теории чисел.
1. Целочисленные прямоугольные треугольники.
2. Суммы квадратов.
3. О сумме четырех нечетных квадратов.
4. Исследование примера.
б. Составление таблицы наблюдений.
6. Каково правило?
7. Природа индуктивного открытия.
8. О природе индуктивных доводов.
Примеры и примечания к главе IV.
      [1. Обозначения. 26. Опасности индукции.]

Глава V. Разные примеры индукции.
1. Разложения.
2. Приближения.
3. Пределы.
4. Попытка опровергнуть.
5. Попытка доказать.
6. Роль индуктивной фазы.
Примеры и примечания к главе V.
      [15. Объясните наблюдаемые закономерности. 16. Классифицируйте наблюдаемые факты. 18. В чем различие?]

Глава VI. Одно более общее утверждение.
1. Эйлер.
2. Мемуар Эйлера.
3. Переход к более общей точке зрения.
4. Схематический очерк мемуара Эйлера.
Примеры и примечания к главе VI.
      [1. Производящие функции. 7. Одна комбинаторная задача плоской геометрии. 10. Суммы квадратов. 19. Другая рекуррентная формула. 20. Другой Наиболее Необычайный Закон Чисел, Относящийся к Суммам их Делителей. 24. Как Эйлер упустил открытие. 25. Обобщение теоремы Эйлера о σ(n)]

Глава VII. Математическая индукция.
1. Индуктивная фаза.
2. Фаза доказательства.
3. Исследование переходов.
4. Техника математической индукции.
Примеры и примечания к главе VII.
      [12. Доказать больше иногда легче. 14. Уравновесьте вашу теорему! 15. Перспектива. 17. Равны ли любые n чисел!]
Глава Vlll. Максимумы и минимумы.
1. Схемы.
2. Пример.
3. Схема касательной линии уровня.
4. Примеры.
5. Схема частного изменения.
6. Теорема о среднем арифметическом и среднем геометрическом и ее первые следствия.
Примеры и примечания к главе VIII.
Первая часть.
      [1. Наименьшие и наибольшие расстояния в плоской геометрии. 2. Наименьшие и наибольшие расстояния в пространственной геометрии. 3. Линии уровня на плоскости. 4. Поверхности уровня в пространстве. 11. Принцип пересекающей линии уровня. 22. Принцип частного изменения. 23. Существование экстремума. 24. Видоизменение схемы частного изменения: бесконечный процесс. 25. Другое видоизменение схемы частного изменения: конечный процесс. 26. Графическое сравнение.]
Вторая часть.
      [33. Многоугольники и многогранники. Площадь и периметр. Объем и поверхность. 34. Прямая призма с квадратным основанием. 35. Прямой цилиндр. 36. Произвольная прямая призма. 37. Прямая. двойная пирамида с квадратным основанием. 38. Прямой двойной конус. 39. Произвольная прямая двойная пирамида. 43. Приложение геометрии к алгебре. 45. Приложение алгебры к геометрии. 51. Прямая пирамида с квадратным основанием. 52. Прямой конус. 53. Произвольная прямая пирамида. 55. Ящик без крышки. 56. Корыто. 57. Обломок. 62. Почтовая задача. 63. Задача Кеплера.]

Глава IX. физическая математика.
1. Оптическая интерпретация.
2. Механическая интерпретация.
3. Новая интерпретация.
4. Открытие брахистохроны Иоганном Бернулли.
5. Открытие Архимедом интегрального исчисления.
Примеры и примечания к главе IX.
      [3. Треугольник с минимальным периметром, вписанный в данный треугольник. 9. Транспортный центр четырех точек в пространстве. 10. Транспортный центр четырех точек на плоскости. 11. Транспортная сеть для четырех точек. 12. Разверните и выпрямите. 13. Бильярд. 14. Геофизическое исследование. 23. Кратчайшие линии на многогранной поверхности. 24. Кратчайшие (геодезические) линии на кривой поверхности. 26. Построение посредством сгибания бумаги. 27. Бросается кость. 28. Всемирный потоп. 29. Не слишком глубоко. 30. Полезный крайний случай. 32. Вариационное исчисление. 33. От равновесия поперечных сечений к равновесию тел. 38. Ретроспективный взгляд на Метод Архимеда.]

Глава X. Изопериметрическая задача.
1. Индуктивные доводы Декарта.
2. Скрытые доводы.
3. Физические доводы.
4. Индуктивные доводы лорда Рэлея.
5. Выведение следствий.
6. Подтверждение следствий.
7. Очень близко.
8. Три формы изопериметрической теоремы.
9. Приложения и вопросы.
Примеры и примечания к главе Х.
Первая часть.
      [1. Взгляд назад. 1. Могли бы вы вывести какую-либо часть этого результата иначе? 3. Заново с большими подробностями. 7. Можете ли вы воспользоваться этим методом для решения какой-нибудь другой задачи? 8. Более сильная форма изопериметрической теоремы.]
Вторая часть.
      [16. Палка и веревка. 21. Две палки и две веревки. 25. Задача Дидоны в пространственной геометрии. 27. Биссекторы плоской области. 34. Биссекторы замкнутой поверхности. 40. Фигура многих совершенств. 41. Аналогичный случай 42. Правильные многогранники. 43. Индуктивные доводы.]

Глава XI. Другие виды правдоподобных доводов.
1. Предположения и предположения.
2. Суждение по родственному случаю.
3. Суждение по общему случаю.
4. Более простое предположение предпочтительнее.
5. Фон.
6. Неисчерпаем.
7. Обычные эвристические допущения.
Примеры и примечания к главе XI.
      [16. Общий случай. 19. Никакая идея не является действительно плохой. 20. Несколько обычных эвристических допущений. 21. Вознагражденный оптимизм. 23. Числовые выкладки и инженер.]
Заключительное замечание к первому тому.

Том II.
СХЕМЫ ПРАВДОПОДОБНЫХ УМОЗАКЛЮЧЕНИЙ.
Предисловие ко II тому.

Глава XII. Несколько бросающихся в глаза схем.
1. Подтверждение следствия.
2. Последовательное подтверждение нескольких следствий.
3. Подтверждение невероятного следствия.
4. Умозаключение по аналогии.
5. Углубление аналогии.
6. Затушеванное умозаключение по аналогии.
Примеры и примечания к главе XII.
      [14. Индуктивное умозаключение по бесплодным усилиям.]

Глава XIII. Дальнейшие схемы и первые связи между схемами.
1. Исследование следствия.
2. Исследование возможного основания.
3. Исследование противоречащего предположения.
4. Логические термины.
5. Логические связи между схемами правдоподобных умозаключений.
6. Затушеванное умозаключение.
7. Таблица.
8. Комбинация простых схем.
9. Об умозаключении по аналогии.
10. Уточненное умозаключение.
11. О последовательных подтверждениях.
12. О соперничающих предположениях.
13. О судебном доказательстве.
Примеры и примечания к главе XIII.
Первая часть.
      [9. Об индуктивном исследовании в математике и в физических науках. 10. Пробные общие формулировки.]
Вторая часть.
      [11. Более личное, более сложное. 12. Существует прямая, соединяющая две данные точки. 13. Существует прямая, проходящая через данную точку в данном направлении. Проведение параллели. 14. Наиболее очевидный случай может оказаться единственным возможным случаем. 15. Установление моды. Сила слов. 16. Это слишком невероятно, чтобы быть всего лишь совпадением. 17. Совершенствование аналогии. 18. Новое предположение. 19. Еще одпо новое предположение. 20. Что типично?]

Глава XIV. Случай. Неизменное соперничающее предположение.
1. Случайные массовые явления.
2. Понятие вероятности.
3. Применение мешка и шаров.
4. Исчисление вероятностей. Статистические гипотезы.
5. Непосредственное предсказание частот.
6. Объяснение явлений.
7. Оценка статистических гипотез.
8. Выбор между статистическими гипотезами.
9. Оценка нестатистических предположений.
10. Оценка математических предположений.
Примеры и примечания к главе XIV.
Первая часть.
Вторая часть.
      [19. О понятии вероятности. 20. Как не следует истолковывать понятие вероятности, основанное на частоте. 24. Вероятность и решение задач. 25. Правильный и неправильный. 26. Фундаментальные правила исчисления вероятностей. 27. Независимость. 30. Перестановки и вероятность. 31. Сочетания и вероятность. 32. Выбор соперничающего статистического предположения. Пример. 33. Выбор соперничающего статистического предположения. Общие замечания.]

Глава XV. Исчисление вероятностей и логика правдоподобных рассуждений.
1. Правила правдоподобных рассуждений.
2. Один аспект доказательного рассуждения.
3. Соответствующий аспект правдоподобного рассуждения.
4. Один аспект исчисления вероятностей. Трудности.
5. Один аспект исчисления вероятностей. Попытка.
6. Исследование следствия.
7. Исследование возможного основания.
8. Исследование противоречащего предположения.
9. Исследование одного за другим нескольких следствий.
10. О косвенных уликах.
Примеры и примечания к главе XV.
      [4. Вероятность и правдоподобность. 5. Правдоподобие и правдоподобность. 6. Попытка Лапласа связать индукцию с вероятностью. 7. Почему не количественно? 8. Бесконечно малые правдоподобности? 9. Правила допустимости.]

Глава XVI. Правдоподобные рассуждения в изобретении и обучении.
1. Предмет настоящей главы.
2. Рассказ о маленьком открытии.
3. Процесс решения.
4. Deus ex machina.
5. Эвристическое оправдание.
6. Рассказ о другом открытии.
7. Несколько типичных указаний.
8. Индукция в изобретении.
9. Несколько слов преподавателю.
Примеры и примечания к главе XVI.
      [1. Преподавателю: некоторые типы задач. 7. Qui himium probat, nihil probat. 8. Близость и правдоподобность. 9. Вычисления и правдоподобные рассуждения. 13. Формальное доказательство и правдоподобные рассуждения.]

Решения.
Глава 1.
Глава II.
Глава III.
Глава IV.
Глава V.
Глава VI.
Глава VII.
Глава VIII.
Глава IX.
Глава X.
Глава XI.
Глава XII.
Глава XIII.
Глава XIV.
Глава XV.
Глава XVI.

Библиография.


Скачать в формате Djvu 7.2 Mb
Rambler's Top100